Regulation of the Na,K-ATPase by FXYD1

نویسنده

  • Erica Cirri
چکیده

The Na,K-ATPase is an integral membrane protein present in virtually all animal cells, where it actively transports Na + and K + ions across the plasma membrane using ATP as energy source. For every ATP molecule hydrolyzed, the enzyme pumps three Na + ions out of and two K + ions into the cell. Because of its fundamental role in many physiological processes, the Na,K-ATPase is the target of specific regulatory mechanisms. Among them, the enzyme is modulated by the interaction with the so-called FXYD proteins, a group of short transmembrane polypeptides named after the invariant extracellular motif FXYD. All mammalian members of the FXYD family are known to associate with the Na,K-ATPase and modulate its properties in a tissue-and isozyme-specific way. FXYD1, also known as phospholemman, has been first identified as the major substrate for protein kinases A and C in the heart. Subsequently, it has been discovered to associate with specific isozymes of the Na,K-ATPase and modulate the enzyme activity in heart and skeletal muscle as well as kidneys and brain. So far, the effects of FXYD1 on the Na,K-ATPase have been investigated mainly in intact cells, both heterologous systems and native cells. These systems allow a better characterization of the physiological effects of FXYD1, but are of limited use for the investigation of the functional and structural interactions between FXYD1 and the enzyme. A purification procedure of the human α 1 /His 10-β 1 and α 2 /His 10-β 1 isozymes of the Na,K-ATPase expressed in yeast P. pastoris has been recently developed by the group of Steven Karlish at the Weizmann Institute of Science. The purified, detergent-solubilized α 1 /His 10-β 1 can be in vitro reconstituted with purified, detergent-solubilized human FXYD1 expressed in E. coli to obtain the α 1 /His 10-β 1 /FXYD1 complex. The purified recombinant preparations provide a system that enables us to work under well defined conditions and without interference by other cellular components. Unlike in native cells, the effects of FXYD1 on the different isozymes of the Na,K-ATPase can be investigated separately. Moreover, since the phosphorylation state of FXYD1 in the purified preparations is easily controllable, the functional role of the protein kinases-mediated phosphorylation of FXYD1 can be investigated. Therefore, these systems allow the performance of a detailed functional analysis of the effects of FXYD1 on the Na,K-ATPase. The biophysical techniques based on the fluorescence of external dyes available in …

منابع مشابه

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus

Developmental and tissue-specific differences in isoforms allow Na+, K+-ATPase function to be tightly regulated, as they control sensitivity to ions and inhibitors. Uterine contraction relies on the activity of the Na+, K+ATPase, which creates ionic gradients that drive excitation-contraction coupling. It is unknown whether Na+, K+ATPase isoforms are regulated throughout pregnancy or whether th...

متن کامل

Multiplicity of expression of FXYD proteins in mammalian cells: dynamic exchange of phospholemman and gamma-subunit in response to stress.

Functional properties of Na-K-ATPase can be modified by association with FXYD proteins, expressed in a tissue-specific manner. Here we show that expression of FXYDs in cell lines does not necessarily parallel the expression pattern of FXYDs in the tissue(s) from which the cells originate. While being expressed only in lacis cells in the juxtaglomerular apparatus and in blood vessels in kidney, ...

متن کامل

Phospholemman (FXYD1) raises the affinity of the human α1β1 isoform of Na,K-ATPase for Na ions.

The human α(1)/His(10)-β(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-β-maltoside, and purified by metal chelate chromatography. The α(1)β(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitr...

متن کامل

Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development.

Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012